Jan van Mill

نویسنده

  • Jan van MILL
چکیده

De Groot proved that every group is the autohomeomorphism group of some metrizable space. A space is totally disconnected if every connected subset of it contains at most one point. We prove that every separable metrizable totally disconnected topological group is topologically isomorphic to the autohomeomorphism group of some separable metrizable space, when given the compact-open topology. It is known that, for example, the circle group cannot be realized in this way.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Guram Bezhanishvili , Nick Bezhanishvili , Joel Lucero - Bryan and Jan van Mill S 4 . 3 and hereditarily extremally disconnected spaces

Research Article Guram Bezhanishvili, Nick Bezhanishvili, Joel Lucero-Bryan and Jan van Mill S4.3 and hereditarily extremally disconnected spaces Abstract: Themodal logic S4.3 de nes the class of hereditarily extremally disconnected spaces (HED-spaces). We construct a countable HED-subspaceX of the Gleason cover of the real closed unit interval [0, 1] such that S4.3 is the logic ofX.

متن کامل

Topology Proceedings 33 (2009) pp. 153-161: Homogeneous spaces and transitive actions by $\aleph_0$-bounded groups

We construct a homogeneous connected Polish space X on which no א0-bounded topological group acts transitively. In fact, X is homeomorphic to a convex subset of Hilbert space `.

متن کامل

Homeomorphism Groups and Metrisation of Manifolds

We prove that a manifold M is metrisable if and only if its group of homeomorphisms H (M) endowed with the compact-open topology is a qspace. We also discuss pseudo-character and tightness. All spaces under discussion are Tychonoff.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001